import pandas as pd
data = {
"age": [50, 40, 30, 40],
"qualified": [True, False, False, False]
}
idx = ["Sally", "Mary", "John", "Monica"]
df = pd.DataFrame(data, index=idx)
print("--------BEFORE--------")
print(df)
newidx = ["Robert", "Cindy", "Chloe", "Pete"]
newdf = df.reindex(newidx)
print("--------AFTER--------")
print(newdf)
#Notice that the values are set to NaN, which is the default behaviour when the new index is not the same as the old.
--------BEFORE-------- age qualified Sally 50 True Mary 40 False John 30 False Monica 40 False --------AFTER-------- age qualified Robert NaN NaN Cindy NaN NaN Chloe NaN NaN Pete NaN NaN