Get your own Python server Result Size: 625 x 565
x
 
#Three lines to make our compiler able to draw:
import sys
import matplotlib
matplotlib.use('Agg')
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import accuracy_score, confusion_matrix, roc_auc_score, roc_curve
n = 10000
y = np.array([0] * n + [1] * n)
# 
y_prob_1 = np.array(
    np.random.uniform(.25, .5, n//2).tolist() + 
    np.random.uniform(.3, .7, n).tolist() + 
    np.random.uniform(.5, .75, n//2).tolist()
)
y_prob_2 = np.array(
    np.random.uniform(0, .4, n//2).tolist() + 
    np.random.uniform(.3, .7, n).tolist() + 
    np.random.uniform(.6, 1, n//2).tolist()
)
def plot_roc_curve(true_y, y_prob):
    """
    plots the roc curve based of the probabilities
    """
    
    fpr, tpr, thresholds = roc_curve(true_y, y_prob)
    plt.plot(fpr, tpr)
    plt.xlabel('False Positive Rate')
    plt.ylabel('True Positive Rate')
fpr, tpr, thresholds = roc_curve(y, y_prob_2)
plt.plot(fpr, tpr)
#Two  lines to make our compiler able to draw:
plt.savefig(sys.stdout.buffer)
sys.stdout.flush()